Previous topics
1. Introduction to statistics: The (small) Big Picture or how to solve 95% of statistical problems
2. Linear regression vs. Statistical tests ⚔ who wins?
3. Logistic regression: or what is the probability of success?
Why do we need ROC curves and confusion matrices?
For assessing the predictive accuracy of the classifier (i.e. logistic regression) or for assessing the accuracy of medical tests and calculating lot’s of medical metrics (i.e. prevalence). Since confusion matrix works for both, classification and medicine, there is a nice link between machine learning and epidemiology.
This is the last lecture in my coarse “Statistics for non statisticians”. Critical comments and wishes for the future lectures are highly appreciated!
Enjoy! 🥳
If you want to see only slides, go to: https://yury-zablotski.netlify.app/po...
Смотрите видео From Confusion Matrix to ROC curve: or the link between machine learning and epidemiology онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь yuzaR Data Science 20 Июнь 2020, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 1,753 раз и оно понравилось 29 людям.