#cybertech24
#wifi
#hideandseek
#hidewifiname
https://www.youtube.com/c/CYBERTECH24...
In wireless networking, the hidden node problem or hidden terminal problem occurs when a node can communicate with a wireless access point (AP), but cannot directly communicate with other nodes that are communicating with that AP.[1] This leads to difficulties in medium access control sublayer since multiple nodes can send data packets to the AP simultaneously, which creates interference at the AP resulting in no packet getting through.
Although some loss of packets is normal in wireless networking, and the higher layers will resend them, if one of the nodes is transferring a lot of large packets over a long period, the other node may get very little goodput.
Practical protocol solutions exist to the hidden node problem. For example, Request To Send/Clear To Send (RTS/CTS) mechanisms where nodes send short packets to request permission of the access point to send longer data packets. Because responses from the AP are seen by all the nodes, the nodes can synchronize their transmissions to not interfere. However, the mechanism introduces latency, and the overhead can often be greater than the cost, particularly for short data packets.
Background
Hidden nodes in a wireless network are nodes that are out of range of other nodes or a collection of nodes. Consider a physical star topology with an access point with many nodes surrounding it in a circular fashion: each node is within communication range of the AP, but the nodes cannot communicate with each other.
For example, in a wireless network, it is likely that the node at the far edge of the access point's range, which is known as A, can see the access point, but it is unlikely that the same node can communicate with a node on the opposite end of the access point's range, C. These nodes are known as hidden.
Another example would be where A and C are either side of an obstacle that reflects or strongly absorbs radio waves, but nevertheless they can both still see the same AP.
The problem is when nodes A and C start to send packets simultaneously to the access point B. Because the nodes A and C cannot receive each other's signals, so they cannot detect the collision before or while transmitting, carrier-sense multiple access with collision detection (CSMA/CD) does not work, and collisions occur, which then corrupt the data received by the access point.
To overcome the hidden node problem, request-to-send/clear-to-send (RTS/CTS) handshaking (IEEE 802.11 RTS/CTS) is implemented at the Access Point in conjunction with the Carrier sense multiple access with collision avoidance (CSMA/CA) scheme. The same problem exists in a mobile ad hoc network (MANET).
IEEE 802.11 uses 802.11 RTS/CTS acknowledgment and handshake packets to partly overcome the hidden node problem. RTS/CTS is not a complete solution and may decrease throughput even further, but adaptive acknowledgements from the base station can help too.
The comparison with hidden stations shows that RTS/CTS packages in each traffic class are profitable (even with short audio frames, which cause a high overhead on RTS/CTS frames).[2]
In the experimental environment following traffic classes are included: data (not time critical), data (time critical), video, audio. Examples for notations: (0|0|0|2) means 2 audio stations; (1|1|2|0) means 1 data station (not time critical), 1 data station (time critical), 2 video stations.
Solutions
Increasing transmitting power
Increasing the transmission power of the nodes can solve the hidden node problem by allowing the cell around each node to increase in size, encompassing all of the other nodes. This configuration enables the non-hidden nodes to detect, or hear, the hidden node. If the non-hidden nodes can hear the hidden node, the hidden node is no longer hidden. Because wireless LANs use the CSMA/CA protocol, nodes will wait their turn before communicating with the access point.
This solution only works if one increases the transmission power on nodes that are hidden. In the typical case of a WiFi network, increasing transmission power on the access point only will not solve the problem because typically the hidden nodes are the clients (e.g. laptops, mobile devices), not the access point itself, and the clients will still not be able to hear each other. Increasing transmission power on the access point is actually likely to make the problem worse, because it will put new clients in range of the access point and thus add new nodes to the network that are hidden from other clients.
Watch video How to Hide WIFI Name online without registration, duration hours minute second in high quality. This video was added by user CYBER TECH24 08 November 2022, don't forget to share it with your friends and acquaintances, it has been viewed on our site 224 once and liked it 16 people.