Tensorflow: 13 Linear Regression using Tensorflow

Published: 02 October 2020
on channel: BharatOnlineDS
99
1

import numpy as np
=== Create data and simulate results =====
x_data = np.random.randn(200,3)
w_real = [0.3,0.5,0.1]
b_real = -0.2
noise = np.random.randn(1,200)*0.1
y_data = np.matmul(w_real,x_data.T) + b_real + noise
................................................................................................
import tensorflow as tf
................................................................................................
NUM_STEPS = 10
g = tf.Graph()
wb_ = []
with g.as_default():
x = tf.compat.v1.placeholder(tf.float32,shape=[None,3])
y_true = tf.compat.v1.placeholder(tf.float32,shape=None)

with tf.name_scope('inference') as scope:
w = tf.Variable([[0,0,0]],dtype=tf.float32,name='weights')
b = tf.Variable(0,dtype=tf.float32,name='bias')
y_pred = tf.matmul(w,tf.transpose(x)) + b

with tf.name_scope('loss') as scope:
loss = tf.reduce_mean(tf.square(y_true-y_pred))

with tf.name_scope('train') as scope:
learning_rate = .4
optimizer = tf.compat.v1.train.GradientDescentOptimizer(learning_rate)
train = optimizer.minimize(loss)

Before starting, initialize the variables. We will 'run' this first.
init = tf.compat.v1.global_variables_initializer() #variables given memory

with tf.compat.v1.Session() as sess:
sess.run(init)
for step in range(NUM_STEPS):
sess.run(train,{x: x_data, y_true: y_data})
print(step, sess.run([w,b]))
wb_.append(sess.run([w,b]))
print(10, sess.run([w,b]))


Watch video Tensorflow: 13 Linear Regression using Tensorflow online without registration, duration hours minute second in high quality. This video was added by user BharatOnlineDS 02 October 2020, don't forget to share it with your friends and acquaintances, it has been viewed on our site 99 once and liked it 1 people.