Need a custom math course? Visit https://www.MathHelp.com Today!
A number is 56 less than its square. Find the number. To solve this problem, let’s translate the first sentence into an equation. A number, that’s x, is, =, 56 less than it’s square, that’s x squared – 56. Remember that “less than” switches the order around. In other words, “56 less than its square” is not 56 minus x squared, it’s x squared minus 56. Next, since we have an x squared term in our equation, we set it equal to 0 by subtracting x from both sides, and we have 0 = x squared – x – 56. Next, we factor the right side as the product of two binomials. In the first position of each binomial, we have the factors of x squared, x and x. In the second position of each binomial, we’re looking for the factors of -56 that add to -1, which are -8 and positive 7. So we have 0 = x - 8 times x + 7, which means that either 0 = x – 8 or 0 = x + 7. Finally, in the first equation, we add 8 to both sides, to get 8 = x. And in the second equation, we subtract 7 from both sides, to get -7 = x. So 8 = x or -7 = x. It’s important to understand that both of these answers work. Plugging an 8 back into the original problem, we have 8 is 56 less than 8 squared, or 8 = 8 squared – 56, which simplifies to 8 = 64 – 56, or 8 = 8, which is a true statement. And plugging a -7 back into the original problem, we have -7 is 56 less than -7 squared, or -7 = -7 squared – 56, which simplifies to -7 = 49 – 56, or -7 = -7, which is also a true statement.
------
Watch video Quadratic Word Problems | MathHelp.com online without registration, duration hours minute second in high quality. This video was added by user MathHelp.com 24 November 2020, don't forget to share it with your friends and acquaintances, it has been viewed on our site 18,357 once and liked it 309 people.