YouTube Spam Prediction Machine Learning Project | Python & Snorkel Labeling | Project#12

Published: 23 April 2023
on channel: Skillcate AI
2,096
45

🔥 In this video, we are going to build an end-to-end Machine Learning Model - using an unlabelled dataset. We apply the powerful Programmatic Labeling Tool called Snorkel for programmatically creating and managing training datasets for Machine Learning Models. In the Model Training phase, we use CountVectorizer for Feature Representation and Logistic Regression for Classification.

🔥 Programmatic Labeling Series
Part 1:    • Labeling Unlabeled Dataset | Introduc...  
Part 2:    • YouTube Spam Prediction Machine Learn...   [This video]
Link to Jupyter Notebook: https://colab.research.google.com/dri...

🔥 Our other popular ML Projects:
1. Sentiment Analysis Project using LSTM:    • Sentiment Analysis with LSTM | Deep L...  
2. Sentiment Analysis Project (End-to-end) with ML Model Building + Deployment (using Flask):
---- a. Model Building:    • Sentiment Analysis Machine Learning P...   (Part-1)
---- b. Model Deployment:    • PIP + Virtual Environment | Flask Dep...   (Part-2)
3. Sentiment Analysis Project using Traditional ML:    • Sentiment Analysis Project using Mach...  
4. Analytics-enabled Marketing:    • Marketing Analytics Project using Mac...  
5. Credit Scoring Project:    • Credit Scoring Project using Machine ...  
6. Face Recognition Project:    • Face Detection Machine Learning Proje...  


🔥 Do like, share & subscribe to our channel. Keep in touch:
Email: [email protected]
Whatsapp: +91-7404139793
Medium:   / skillcate  
GitHub: https://github.com/skillcate
Discord Server:   / discord  
Facebook:   / mlprojects  


Watch video YouTube Spam Prediction Machine Learning Project | Python & Snorkel Labeling | Project#12 online without registration, duration hours minute second in high quality. This video was added by user Skillcate AI 23 April 2023, don't forget to share it with your friends and acquaintances, it has been viewed on our site 2,096 once and liked it 45 people.