his video is all about Green's Theorem, or at least the first of two Green's Theorem sometimes called the curl, circulation, or tangential form. Consider a smooth, simple, closed curve that encloses a region in the 2D plane, together with a Vector Field. One thing we could do is compute the circulation along that curve, which would be a large-scale or global property. Separately, at any point in the enclosed region we could compute the circulation density or curl at that point, which is a small-scale or local property. The power of Green's Theorem is that it relates these two concepts. The circulation or line integral along the curve (i.e. which only depends thus on the boundary of the region) is equal to the double integral over the entire region of the circulation density. Amazing!
MY VECTOR CALCULUS PLAYLIST:
►VECTOR CALCULUS (Calc IV) • Calculus IV: Vector Calculus (Line In...
0:00 Curl vs Circulation
1:48 Derivation
5:00 Green's Theorem
OTHER COURSE PLAYLISTS:
►DISCRETE MATH: • Discrete Math (Full Course: Sets, Log...
►LINEAR ALGEBRA: • Linear Algebra (Full Course)
►CALCULUS I: • Calculus I (Limits, Derivative, Integ...
► CALCULUS II: • Calculus II (Integration Methods, Ser...
►MULTIVARIABLE CALCULUS (Calc III): • Calculus III: Multivariable Calculus ...
►DIFFERENTIAL EQUATIONS: • How to solve ODEs with infinite serie...
OTHER PLAYLISTS:
► Learning Math Series
• 5 Tips To Make Math Practice Problems...
►Cool Math Series:
• Cool Math Series
BECOME A MEMBER:
►Join: / @drtrefor
MATH BOOKS & MERCH I LOVE:
► My Amazon Affiliate Shop: https://www.amazon.com/shop/treforbazett
SOCIALS:
►Twitter (math based): / treforbazett
►Instagram (photography based): / treforphotography
Watch video Curl, Circulation, and Green's Theorem // Vector Calculus online without registration, duration hours minute second in high quality. This video was added by user Dr. Trefor Bazett 12 November 2020, don't forget to share it with your friends and acquaintances, it has been viewed on our site 149,891 once and liked it 4.3 thousand people.