Решение, вычислить приближенно с помощью дифференциала. y=^3√(x^3+7x), x = 1,012 Пример 11

Published: 07 November 2022
on channel: Higher mathematics in examples
279
4

Решение задания на тему производная функции. Применение дифференциала к приближенным вычислениям.
Пример решения, вычислить приближенно с помощью дифференциала. y=^3√(x^3+7x), x = 1,012 пример 11

Поддержать автора решений
https://www.donationalerts.com/r/fizm...
ЮMoney+банковская карта: https://yoomoney.ru/to/4100110239883125
QIWI: https://qiwi.com/n/FIZMATHIMRU

Рынок цифровых товаров (игры, ключи, пин-коды др.): https://plati.market/?ai=378427
Присылайте свои подобные задания, можно в комментариях, постараюсь решить и выложить здесь.
Решенные задания на фотографиях по разделам: https://fizmathim.ru/photo/
Готовые решения по высшей математике, физике, химии: https://fizmathim.ru/
Группа в ВК: https://vk.com/fizmathim_resh
Дзен: https://dzen.ru/id/5c52cb72327a7c00ac...
Boosty: https://boosty.to/fizmathim/ref

#математика #приближенноезначение #дифференциал


Watch video Решение, вычислить приближенно с помощью дифференциала. y=^3√(x^3+7x), x = 1,012 Пример 11 online without registration, duration hours minute second in high quality. This video was added by user Higher mathematics in examples 07 November 2022, don't forget to share it with your friends and acquaintances, it has been viewed on our site 27 once and liked it people.