TransformerFAM: Feedback attention is working memory

Published: 28 April 2024
on channel: Yannic Kilcher
37,923
1k

Paper: https://arxiv.org/abs/2404.09173

Abstract:
While Transformers have revolutionized deep learning, their quadratic attention complexity hinders their ability to process infinitely long inputs. We propose Feedback Attention Memory (FAM), a novel Transformer architecture that leverages a feedback loop to enable the network to attend to its own latent representations. This design fosters the emergence of working memory within the Transformer, allowing it to process indefinitely long sequences. TransformerFAM requires no additional weights, enabling seamless integration with pre-trained models. Our experiments show that TransformerFAM significantly improves Transformer performance on long-context tasks across various model sizes (1B, 8B, and 24B). These results showcase the potential to empower Large Language Models (LLMs) to process sequences of unlimited length.

Authors: Dongseong Hwang, Weiran Wang, Zhuoyuan Huo, Khe Chai Sim, Pedro Moreno Mengibar

Links:
Homepage: https://ykilcher.com
Merch: https://ykilcher.com/merch
YouTube:    / yannickilcher  
Twitter:   / ykilcher  
Discord: https://ykilcher.com/discord
LinkedIn:   / ykilcher  

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon:   / yannickilcher  
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n


Watch video TransformerFAM: Feedback attention is working memory online without registration, duration hours minute second in high quality. This video was added by user Yannic Kilcher 28 April 2024, don't forget to share it with your friends and acquaintances, it has been viewed on our site 37,923 once and liked it 1 thousand people.