This tutorial shows you how you can use Xpresso to explore variations in parametric equations, and how to animate the formula spline (xt, yt, zt) parameters.
Intro: 0:00
Basics: 2:18
Complex Formula: 26:00
Complete Animation Tutorial: 47:03
Other Formulas: 1:08:23
You can download a C4D library with example formula splines with parameters here: https://gumroad.com/l/splineformulas
Links:
https://en.wikipedia.org/wiki/Paramet...
https://mathworld.wolfram.com/topics/...
https://en.wikipedia.org/wiki/NACA_ai...
Here are some equations you can paste into a python Xpresso node:
Sin Wave on Cone
#R=Radius, a=frequency, c=wave height, p=position
global xt,yt,zt
#b*c*[p+cos(a*t)]*cos(t)
xt = str(R)+"*"+str(c)+"*["+str(p)+"+cos("+str(a)+"*t)]*cos(t)"
#b*c*[p+cos(a*t)]
yt = str(R)+"*"+str(c)+"*["+str(p)+"+cos("+str(a)+"*t)]"
#b*c*[p+cos(a*t)]*sin(t)
zt = str(R)+"*"+str(c)+"*["+str(p)+"+cos("+str(a)+"*t)]*sin(t)"
Sin Wave on Cylinder
#R=Radius, F=frequency, H=wave height, P=position
global xt,yt,zt
xt = str(R)+"*cos(t)"
yt = str(H)+"*cos(t*"+str(F)+")+"+str(P)
zt = str(R)+"*sin(t)"
Sin Wave on Hyperboloid
#R=Radius, a=frequency, c=wave height
global xt,yt,zt
#b*sqrt[1-sqr(c)*sqr(cos(a*t))]*cos(t)
xt = str(R)+"*sqrt[1+sqr("+str(c)+")*sqr(cos("+str(a)+"*t))]*cos(t)"
yt = str(R)+"*"+str(c)+"*cos("+str(a)+"*t)"
#b*sqrt[1-sqr(c)*sqr(cos(a*t))]*sin(t)
zt = str(R)+"*sqrt[1+sqr("+str(c)+")*sqr(cos("+str(a)+"*t))]*sin(t)"
Sin Wave on Sphere
#R=Radius, a=frequency, c=wave height
global xt,yt,zt
#b*sqrt[1-sqr(c)*sqr(cos(a*t)])*cos(t)
xt = str(R)+"*sqrt[1-sqr("+str(c)+")*sqr(cos("+str(a)+"*t))]*cos(t)"
yt = str(R)+"*"+str(c)+"*cos("+str(a)+"*t)"
#b*sqrt[1-sqr(c)*sqr(cos(a*t))]*sin(t)
zt = str(R)+"*sqrt[1-sqr("+str(c)+")*sqr(cos("+str(a)+"*t))]*sin(t)"
Helix on Sphere
#R=Radius, L=Loops, tn links to Tmin, tx links to Tmax
global xt,yt,zt,tn,tx
xt = "sqrt(1-sqr(t/"+str(L)+"))*cos(t*1*pi)*"+str(R)
if (L==0): yt = "t*0"
else: yt = "t*"+str(R/L)
zt = "sqrt(1-sqr(t/"+str(L)+"))*sin(t*1*pi)*"+str(R)
tn = -L
tx = L
Torus
#R=Radius, P=Pipe Radius, L=Loops
global xt,yt,zt
xt = "("+str(P)+"*sin("+str(L)+"*t)+"+str(R)+")*cos(t)"
yt = ""+str(P)+"*cos("+str(L)+"*t)"
zt = "("+str(P)+"*sin("+str(L)+"*t)+"+str(R)+")*sin(t)"
Cone
#R=Radius, H=Height, L=Loops, W=Wave
global xt,yt,zt
xt = str(R)+"*t/2/pi*cos(t*"+str(L)+")"
yt = str(H)+"*t/2/pi*cos(t*"+str(W)+")"
zt = str(R)+"*t/2/pi*Sin(t*"+str(L)+")"
Rhodenea
#S=Size, mx=x multiplier, my=y multiplier
global xt, yt
xt = "cos("+str(x)+"*t)*cos(t) * "+str(S)
yt = "cos("+str(y)+"*t)*sin(t) * "+str(S)
Wavey Spiral
#parameters are xa,xb, ya,yb, za,zb
global xt,yt,zt
xt = "sin(t/"+str(xa)+")*"+str(xb)+"*t"
yt = "sin(t*"+str(ya)+")*"+str(yb)
zt = "cos(t/"+str(za)+")*"+str(zb)+"*t"
Watch video Cinema 4D Tutorial - Formula Spline Control online without registration, duration hours minute second in high quality. This video was added by user Pappy's Tutorials 18 April 2020, don't forget to share it with your friends and acquaintances, it has been viewed on our site 8,20 once and liked it 24 people.